(Medical Xpress)—Although the brain-as-computer metaphor is flawed in several ways, dendrites and axons may be considered respectively as a neuron's input and output compartments – and determining how they differentiate during neuronal development is critical in understanding neural circuit assembly as well as in correcting and preventing defective and damaged neurons. Recently, scientists at the University of Michigan demonstrated that a single molecular pathway in Drosophila (fruit flies) controls both dendritic and axonal growth, doing so by focusing on dual leucine zipper kinase (DLK) – a key molecule in this pathway. While DLK is a key regulator of axon growth and regeneration, the new study demonstrates for the first time its role in dendritic growth. The researchers conclude that their findings may lead to a method for promoting axon regeneration without affecting dendritic growth, and suggest that their results provide a new perspective for understanding neuronal compartmentalization and morphology.
↧